The Gervais-Neveu-Felder equation and the quantum Calogero-Moser systems

نویسنده

  • J. Avan
چکیده

We quantize the spin Calogero-Moser model in the R-matrix formalism. The quantum R-matrix of the model is dynamical. This R-matrix has already appeared in Gervais-Neveu’s quantization of Toda field theory and in Felder’s quantization of the Knizhnik-Zamolodchikov-Bernard equation. PAR LPTHE 95-25 ∗L.P.T.H.E. Université Paris VI (CNRS UA 280), Box 126, Tour 16, 1er étage, 4 place Jussieu, 75252 Paris Cedex 05, France

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Gervais-Neveu-Felder equation for the Jordanian quasi-Hopf Uh;y(sl(2)) algebra

Using a contraction procedure, we construct a twist operator that satisfies a shifted cocycle condition, and leads to the Jordanian quasi-Hopf Uh;y(sl(2)) algebra. The corresponding universal Rh(y) matrix obeys a Gervais-Neveu-Felder equation associated with the Uh;y(sl(2)) algebra. For a class of representations, the dynamical Yang-Baxter equation may be expressed as a compatibility condition ...

متن کامل

The Heun Equation and the Calogero-moser-sutherland System I: the Bethe Ansatz Method

Olshanetsky and Perelomov proposed the family of integrable quantum systems, which is called the Calogero-Moser-Sutherland system or the Olshanetsky-Perelomov system ([5]). In early 90’s, Ochiai, Oshima and Sekiguchi classified the integrable models of quantum mechanics which are invariant under the action of a Weyl group with some assumption ([4]). For the BN (N ≥ 3) case, the generic model co...

متن کامل

Eigenvalues of Ruijsenaars - Schneider models associated with A n − 1 root system in Bethe ansatz formalism

Ruijsenaars-Schneider models associated with A n−1 root system with a discrete coupling constant are studied. The eigenvalues of the Hamiltonian are given in terms of the Bethe ansatz formulas. Taking the " non-relativistic " limit, we obtain the spectrum of the corresponding Calogero-Moser systems in the third formulas of Felder et al [22].

متن کامل

Quantum dynamical Yang-Baxter equation over a nonabelian base

In this paper we consider dynamical r-matrices over a nonabelian base. There are two main results. We first give a geometric construction of a non-degenerate triangular dynamical rmatrix from a fat reductive decomposition g = h⊕m using symplectic fibrations. We also prove that a triangular dynamical r-matrix r : h∗ −→ ∧g corresponds to a Poisson manifold h∗ ×G. A special type of quantizations o...

متن کامل

The non-dynamical r-matrices of the degenerate Calogero-Moser models

A complete description of the non-dynamical r-matrices of the degenerate Calogero-Moser models based on gln is presented. First the most general momentum independent r-matrices are given for the standard Lax representation of these systems and those r-matrices whose coordinate dependence can be gauged away are selected. Then the constant r-matrices resulting from gauge transformation are determ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996